熔体静电纺丝是纳米纤维制造的新兴技术之一,其优选的特点是不用添加溶剂,具有无毒、环保、安全、经济等方面的优势。在生物医学、药物控释、组织工程等方向具有广阔的应用前景。本书基于作者多年的原创科研成果,对熔体静电纺丝技术做了全面的总结,共四部分。第一部分介绍了熔融静电纺丝的发明,包括离心熔融静电纺丝和向上熔融静电纺丝的独立发展。分别对两种方法的产率和纤维直径进行了优化。第二部分介绍了熔融体的静电纺丝以及利用不同聚合物和自行设计的装置测试纤维性能的方法。第三部分介绍耗散粒子动力学模拟。这种模拟技术是模拟纺丝过程中分子链结构和取向的一种方法。第四部分介绍了离心熔融静电纺丝的原理、方法及改进措施。
本书不仅适合静电纺丝研究的广大科研人员阅读,同时还可供燃料电池、锂电池、太阳能电池、水过滤、空气过滤、血液过滤、组织工程、载药缓释、癌症检测、介入治疗支架、人造血管、金属吸附等可能用到纳米纤维的广大领域的科技工作者、研究生、企业管理人员参考。
About the authors
Preface
Acknowledgments
1.Development of melt electrospinning: the past, present, and future
1.1 Electrospinning
1.2 The working principle of electrospinning
1.3 Types of electrospinning
1.4 Solution electrospinning
1.5 Melt electrospinning
1.6 The scope of this book
References
2.The device of melt electrospinning
2.1 Introduction
2.2 Conventional melt electrospinning devices
2.3 Laser heating melt electrospinning devices
2.4 Screw extrusion melting electrostatic spinning devices
2.5 Electromagnetic spinning devices for vibration
2.6 Air melt electrospinning devices
2.7 Coaxial melt electrosplnning devices
2.8 Upward melt electrospinning devices
2.9 Centrifugal melt electrospinning devices
2.10 Conclusion
References
3.Formation of fibrous structure and influential factors in melt electrospinning
3.1 Polycaprolactone
3.1 .I Experiment
3.1.2 Results ~nd discussion
3.2 Polylactic acid (PLA)
3.2.1 The diameter of PLLA fiber under a pulsed electric field
3.2.2 Thermal degradation of PLA fiber
3.2.3 The relative molecular mass of PLA fibers
3.2.4 Orientation and crystallinity of the PLA fiber
3.3 Phenolic resin
3.3.1 Materials and equipment
3.3.20 rthogonal experimental arrangements
3.3.3 Optimal spinning conditions
3.3.4 Fiber heat resistance and crystallinity
3.3.5 Session conclusion
3.4 Polypropylene (PP)
3.4.1 Equipment
3.4.2 Effect of collecting plate on spinning electric field
3.4.3 Effect of upper plate on spinning electric field
3.4.4 Effect of the hyperbranched polymers
3.4.5 Effect of polar additive on PP
3.5 Conclusion
References
Further reading
4.Melt electrospinning in a parallel electric field
4.1 Introduction
4.2 Method and experiments
4.2.1 Experimental material
4.2.2 Parallel electrospinning equipment
4.2.3 Finite element modeling
4.2.4 Theoretical analysis
4.3 Results and discussion
4.3.1 Experimental electrospinning in a parallel electric field
4.3.2 Finite element simulation of the electrospinning process in a parallel electric field
4.4 Conclusion
References
5.Dissipative particle dynamics simulation on melt electrospinning
5.1 Introduction
5.2 Differential scanning calorimetry simulation under different electric fields
5.2.1 Electrostatic field
5.2.2 Pulsed electric field
5.3 Conclusion
References
6.Experimental study on centrifugal melt electrospinning
6.1 Overview of centrifugal melt electrospinning
6.2 Research progress of centrifugal melt electrospinning at home and abroad
6.3 The significance of centrifugal melt electrospinning devices
6.4 Experimental study on centrifugal melt electrospinning
6.4.1 Experimental section
6.4.2 Characterization method
6.4.3 Results and discussion
6.5 Innovative design of centrifugal melt electrospinning devices
6.6 Conclusion
References
7.Dissipative particle dynamics simulations of centrifugal melt electrospinning
7.1 Introduction
7.2 The dissipative particle dynamics model in centrifugal melt electrospinning
7.3 Different electric field simulation of centrifugal melt electrospinning
7.3.1 Centrifugal melt electrospinning in an electrostatic field
7.3.2 Centrifugal melt electrospinning in a pulsed electric field
7.4 Conclusion
References
8.Three-dimensional (3D) printing based on controlled melt electrospinning in polymeric biomedical materials
8.1 Introduction
8.2 Basic principles of 3D printing based on electrospinning
8.3 Different auxiliary electrode and dielectric plate collectors
8.3.1 Setup for electrospinning with an electrostatic lens system
8.3.2 Dielectric plate with sharp-pin electrode
8.4 Patterned, tubular, and porous nanofiber
8.5 Conclusion
References
Index